Decentralized Finance

Lending and Borrowing

Instructors: Dan Boneh, Arthur Gervais, Andrew Miller, Christine Parlour, Dawn Song

Why lending?

2

How the "Economic Machine" works?

How the "Economic Machine" works?

On-Chain Lending & Borrowing

Leverage == A debt multiplier

Terminology

https://defi-learning.org

Terminology

Collateral

- Assets that serve as a security deposit
- Over-collateralization
 - Borrower has to provide value(collateral assets) > value(granted loan)
- Under-collateralization
 - value(collateral) < value(debt)</pre>
- Liquidation
 - If value(collateral) <= 150% x value(debt)</p>
 - Anyone can liquidate the debt position

Health Factor

- 0 < Liquidation Threshold < 1
- The liquidation threshold provides a "secure" margin
- When the health factor declines below 1, a borrowing position becomes liquidatable

Health Factor

Terminology

 Liquidation Spread LS: bonus, or discount, that a liquidator can collect when liquidating collateral

Value of Collateral to Claim = Value of Debt to Repay \times (1 + LS)

 Close Factor CF: the maximum proportion of the debt that is allowed to be repaid in a single fixed spread liquidation

Value of Debt to Repay < CF × Total Value of Debts

https://defi-learning.org

- E.g., the borrower collateralizes
 ETH and borrows DAI
- The value of ETH exceeds the value of DAI
- The borrower can use the borrowed DAI arbitrarily/freely

Aave Dashboard Screenshot

https://defi-learning.org

- E.g., the borrower collateralizes ETH and borrows DAI
- The value of DAI (debt) can exceed the value of ETH (collateral)
- The collateralized ETH and borrowed DAI <u>are restricted to be used with</u> <u>pre-designed smart contracts</u>. Those are typically farming contracts.
- The vault remains in control of all assets.

Alpha Homora Dashboard Screenshot

Alpha Homora All Positions

III	Positions						
#		Pool	Collateral Value	Borrow Credit 🛈	Collateral Credit 🛈	Debt Ratio 🛈	Action
#457	<u>₿</u> ∳	Sushiswap YFI/ETH	\$1,071,645.78	352.51	358.95	98.20% 💽	
#852	%	Sushiswap ETH/CRV	\$55,776.51	15.34	15.71	97.67% 💽	
#1425	()	Uniswap ETH/CRV	\$9,500.32	2.60	2.68	97.12% 💽	
#1967		Sushiswap DAI/ETH	\$10,679,094.22	3,763.38	3,879.48	97.01% 💌	
#366		Curve 3pool	\$57,460.63	24.22	25.04	96.72% 💼	
#1922	×	Sushiswap SNX/ETH	\$29,583.59	8.81	9.11	96.69% 💼	
#492	(4)	Uniswap UNI/ETH	\$27,551.56	7.50	7.76	96.67% 💽	
#247		Curve 3pool	\$69,507.61	29.28	30.29	96.66% 💌	
#245	(\$ 7	Uniswap USDC/USDT	\$565,634.18	238.22	246.52	96.63% 💽	
#936	₿♦	Sushiswap WBTC/ETH	\$27,944.79	9.81	10.15	96.61% 💽	
#129		Curve	\$35,263.71	14.84	15.37	96.58% 💶	

AH Statistics

Opened Positions (October 2020 – August 2021)

- 3800 borrowers
- 10,430 leverage positions
- Leverage multipliers
 - AHv1: 2.01x
 - AHv2: 3.07x
- Stablecoin leverage multipliers
 - **5**.39x

How are borrowers choosing leverage multipliers?

Distributions of leverage multipliers in Alpha Homora V2 (2581 positions).

APY under Leverage

APY under Leverage

Why does leverage not amplify APY in practice?

Liquidation

https://defi-learning.org

What could go wrong?

Liquidation

- Liquidation == Selling collateral from the borrower
- Liquidation Spread
 - Bonus, or discount for liquidator
 - Fixed spread, or variable (auction based)

Liquidation in Traditional Finance

Fixed Spread Liquidation

- Repays the debts of a borrowing position
- Acquires the collateral at a discounted price from the position in return
 - Typical discounts are e.g., 5-15% in Aave

Fixed Spread Liquidation

- Various liquidators bid over time until the auction terminates
- Requires multiple blockchain transactions.

timeline

English Auction

- bidders outbid each other increasingly
- Dutch Auction
 - auction begins with a high asking price and the price lowers until the auction terminates

MakerDAO tend-dent English auction (Day one – April 2021)

• A position with *D* debt and *C* collateral

MakerDAO Dutch auction (April 2021 – Present)

- Instant Settlement
 - Unlike English auction which are operated in multiple transactions, the MakerDAO Dutch auction is settled instantly in one atomic transaction.

Flash Lending of Collateral

 No upfront DAI (i.e., the debt) is required (i.e., a flash loan used specifically for MakerDAO liquidations).

Price as a Function of Time

 Collateral price decreases over time
 nobody can get the collateral for free by accident

- April 2019 April 2021 (2 years)
- Aave (V1 & V2), Compound, dYdX, and MakerDAO
- 28138 successful liquidations
- 807.46M USD of collateral sold through liquidations

- Total profit: 63.59M USD
- MakerDAO outlier in March 2020, caused by bot failure.

Liquidators typically pay significant gas fees, indicating severe competition.

- Liquidation Sensitivity
 - liquidated collateral upon a hypothetical price decline.

Liquidation Case Study & Insights

https://defi-learning.org

Maker DAO Bot Failure

Black Thursday for MakerDAO: \$8.32 million was liquidated for 0 DAI

whiterabbit Mar 15, 2020 · 6 min read

1 4 ...

Photo by <u>slon pics</u> on <u>Pixabay</u>

TL;DR

- Maker DAO liquidations on March 12 and 13 resulted in protocol losses of **5.67 million DAI**
- This happened due to the opportunity to win liquidation auctions with zero bids, which was **36%** of all liquidations
- The greatest Vault has lost ~35 000 ETH whereas the most successful liquidator has had a profit of 30 000 ETH

Liquidation Insights

Health Factor

 A fixed spread liquidation does not necessarily increase the health factor

Over-liquidation

 Liquidations sell excessive amounts of borrower's collateral

Optimal Liquidation strategy

- Liquidating up to the close factor is not necessarily the best strategy.
- Instead, two successive liquidations might offer more profits.

Optimal Fixed Spread Liquidation Algorithm

```
Input : A liquidatable position \mathcal{POS} = \langle C, D \rangle, where C
represents the collateral value, while D represents
the debt value; Liquidation threshold LT;
Liquidation spread LS; Close factor CF.
Output: Amount of debt to repay in the two optimal
successive liquidations, repay<sub>1</sub> and repay<sub>2</sub>.
Function Liquidatable(\mathcal{POS}):
| return \frac{\mathcal{POS.C \times LT}}{\mathcal{POS.D}} > 1;
end
```

```
Function Liquidate(\mathcal{POS}, repay):

| \mathcal{POS'} \leftarrow \langle C - repay \times (1 + LS), D - repay \rangle;

return \mathcal{POS'};

end
```

```
\begin{aligned} repay_1 &\leftarrow \operatorname{argmax}_r \operatorname{Liquidatable}(\operatorname{Liquidate}(\mathcal{POS}, r)); \\ \mathcal{POS}' &\leftarrow \operatorname{Liquidate}(\mathcal{POS}, repay_1); \\ repay_2 &\leftarrow \mathcal{POS}'.D \times \operatorname{CF}; \end{aligned}
```

Liquidation Insights

Comparison of liquidation mechanisms

- Metrics: the ratio between monthly liquidation profit and volume
- Data suggests that auction liquidations might be more borrower friendly
- dYdX does not have a close factor

Liquidation Insights

Deleveraging Spiral

Is liquidation a good solution to secure lending pools?

Case Study: Optimal Fixed Spread Liquidation

- Compound
- November 26, 2020
- LT = 0.75

Takan	Collateral	Debt	Price (USD)		
Токеп			Block 11333036	After price update	
DAI	108.51M	93.22M	1.08	1.095299	
USDC	17.88M	506.64K	11	11	
	Total Collateral (USD)	135.07M	136.73M		
В	orrowing Capacity (USI	101.30M	102.55M		
	Total Debt (USD)	101.18M	102.61M		
			Healthy	Liquidatable	

Case Study: Optimal Fixed Spread Liquidation

	Repay 46.14M USD			
Original liquidation	Receive 49.83M DAI			
	Profit 3.69M DAI			
	Repay 46.61 DAI			
Up-to-close-factor strategy	Receive 50.34M DAI			
	Profit 3.73M DAI			
	Liquidation 1	Liquidation 2		
Optimal strategy	Repay 296.61K DAI	Repay 46.46M DAI		
Optimal strategy	Receive 320.34K DAI	Receive 50.18M DAI		
	Profit 23.73K DAI	Profit 3.72M DAI		

Optimal strategy yields 3.743M DAI instead of 3.69M DAI

What ideas do you have to avoid liquidations?

Flash Loans

What if Bart can grant a loan to Bob,

without the risk of Bob defaulting on the debt?

Flash Loan

Flash Loan

Flash Loan Pools

- Uniswap 0.3% fees
 - V2 5B USD
 - V3 2.2B USD
- Aave 0.3% fees
 - 10B USD
- dYdX constant fee of 1 Wei
 - about 100M USD

Flash Loan Sizes

Flash Loan Use Cases

- DeFi attacks
 - Price Oracle Manipulation
 - Pump and Dump
- (Risk-free) Arbitrage
- Washtrading
- Flash Minting
- Collateral swapping

Flash Loan Arbitrage

Profit: 16.182k USDC

Flash Loan Based Liquidation

- When a liquidator does not have the cryptocurrency upfront to repay
- Only works when the liquidation completes in one transaction

Given a liquidatable borrowing position with a debt of 2000 DAI collateralized by 2 ETH

Flash Loan Based Liquidation

- When a liquidator does not have the cryptocurrency upfront to repay
- Only works when the liquidation completes in one transaction

Given a liquidatable borrowing position with a debt of 2000 DAI collateralized by 2 ETH

Flash Loan Based Liquidation

- When a liquidator does not have the cryptocurrency upfront to repay
- Only works when the liquidation completes in one transaction

Given a liquidatable borrowing position with a debt of 2000 DAI collateralized by 2 ETH

Collateral Swap

Dept Position

Dept Position